
FOCUS SESSION

Imaging findings in congenital Zika virus infection
syndrome: an update

Andrea Silveira de Souza1 & Patrícia Soares de Oliveira-Szjenfeld2,3
&

Adriana Suely de Oliveira Melo4,5 & Luis Alberto Moreira de Souza1 &

Alba Gean Medeiros Batista4,6 & Fernanda Tovar-Moll1,7

Received: 9 October 2017 /Accepted: 17 October 2017
# Springer-Verlag GmbH Germany 2017

Abstract
Background Zika virus (ZIKV) is a neurotropic and neurotox-
ic RNA Flavivirus prompt to cause severe fetal brain
dysmorphisms during pregnancy, a period of rapid and critical
central nervous system development. Awide range of clinico-
radiological findings of congenital ZIKV infections were re-
ported in the literature, such as microcephaly, overlapping
sutures, cortical migrational and corpus callosum abnormali-
ties, intracranial calcifications, ventriculomegaly, brain stem
and cerebellar malformations, spinal cord involvement, and
joint contractures. ZIKV is also related to other severe neuro-
logical manifestations in grown-up individuals such as
Guillain-Barré syndrome and encephalomyelitis.
Purpose Our purpose is to review the radiological central ner-
vous system abnormalities of congenital ZIKV infection syn-
drome on different imaging modalities.

Keywords Zika . ZIKV .Microcephaly . Congenital
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Introduction

Zika virus has shown striking capacity to knock out
neurogenesis [1–3] and increase neuronal apoptosis over pro-
genitor cells [3–5] or even on differentiated cells [6]. This
neurotropic and neurotoxic RNA Flavivirus virus can be
transmitted through the bite of infected female mosquito vec-
tors [4, 7–11], sexually [2, 11], or by vertical transmission as
the virus is able to cross the fetal-placental barrier [7, 12–15].

Different studies detected Zika virus (ZIKV) infection in
fetal cerebral tissue [6, 12, 13, 16–20], in cerebral spinal fluid
[13, 17, 20, 21] and meninges [7, 17] of microcephalic new-
borns, in umbilical cord [19], and in the amniotic fluid [6, 7,
13, 14, 16, 18, 20] and placenta [1, 7, 13, 15, 20] of pregnant
mothers. Suspicion of maternal ZIKV infection should be
raised in women who experience low-grade fever, arthralgia,
headache, conjunctivitis, myalgia, and a characteristic rash
during pregnancy [1, 9–11, 19].

Adverse pregnancy outcomes due to maternal ZIKV infec-
tion seem to be related to the gestational time of infection [17],
presenting a potential peak risk during 14 to 17 gestational
weeks. According to Johansson [22], the risk of adverse
events may be higher in symptomatic infections.
Nevertheless, mild and undetected infections also contribute
substantially to a great number of fetal infections [1, 22].

In this paper, we will review the imaging findings of con-
genital ZIKV infection syndrome (CZS) and comment some
possible explanations for the most common abnormalities.

Imaging instruments and findings

Imaging techniques are essential tools for the in vivo detection
of major abnormalities related to CZS, with prognostic impor-
tance. Here, the most relevant features of each radiological
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technique are addressed, followed by an update on CZS im-
aging findings.

Ultrasonography

Ultrasonography is a low-cost noninvasive technique that
lacks the use of ionizing radiation and is ideal for monitoring
fetal anatomy, biometrical indices, amniotic fluid levels, and
placental health [7, 20, 23]. Other related methods are
ultrasound-guided transabdominal amniocentesis to investi-
gate causes of congenital fetal damage [13, 18, 20, 23];
transfontanellar ultrasonography [40]; and Doppler scans to
evaluate major arteries and veins [7, 13, 20, 24], fetal growth
restriction, and oligohydramnios [45].

When fetal cranial circumference (CC) is below two stan-
dard deviations (SD) from the expected mean value for gesta-
tional age, with or without other central nervous system
(CNS) anomalies, fetal ZIKV infection should be considered
or ruled out [25]. When CC is below three SD, newborns are
considered to have severe microcephaly [1, 25].

Computed tomography

Computed tomography (CT) scan uses ionizing radiation and
allows multiplanar reformations (MPR) and 3D reconstruc-
tions, which are especially useful as a screening method for
cranial and skeletal anomalies. CT requires immobility, so
sedation may be necessary, especially in older infants [26].

Fetal and postnatal magnetic resonance

It is an expensive imaging technique with more restrained
availability in the public health system, with, however, an
enormous advantage regarding the high quality and detailed
images that can be obtained [7, 23, 25].

Imaging findings

The most striking findings are intrauterine fetal growth retar-
dation [6, 14, 16, 23], cerebral atrophy (small brain) with
microcephaly (small head, with craniofacial disproportion)
[4, 7–10, 12, 13, 16, 17, 20, 27], ventriculomegaly (usually
asymmetrical) [7, 13, 17, 20, 26, 28, 29], and brain calcifica-
tions (particularly in the gray-white matter junction, the basal
ganglia, and/or the thalamus) [7–9, 12, 16, 17, 23, 27–29]
(Fig. 1).

Nevertheless, CZS has a wide range of other clinical-
radiological findings such as skull collapse with overlapped
sutures with redundant scalp skin, prominent occipital bone
[7, 23, 26, 30, 31], cortical and white matter volume loss,
callosal abnormalities, defective neuronal migration (agyria,
pachygyria, polymicrogyria), cerebellar hypoplasia or

maldevelopment, ventriculomegaly [7, 13, 20, 26, 30], intra-
ventricular septations [7, 13, 26, 30], subependymal cysts [13,
23], brain stem abnormalities [7, 13, 20, 23], thalamus ab-
sence [7], degeneration of the long descending tracts in the
brain stem and spinal cord [12, 17, 32], and arthrogryposis [7,
8, 20, 26, 27, 30]. Although amniotic fluid volume may be
completely normal during pregnancy [20], there are reports of
both polyhydramnios and oligohydramnios [7, 18, 19, 33].
Single umbilical artery [19] and fetal hydrops [1] have also
been addressed.

Supratentorial brain anomalies

Microcephaly

Microcephaly is the most recognizedmanifestation of CZS [1,
25, 30], accompanied by craniofacial disproportion and de-
creased vertical size of the skull [26, 30, 31]. This finding is
commonly associated with redundant skin [26, 30] that may
be particularly evident in the forehead or in the occipital and
nuchal regions [20, 30]. Craniofacial abnormalities have also
been described, such as hypertelorism, flat midface, low nasal
bridge, and short nose [1].

Small birth head size for gestational age indicates possible
brain growth impairment [1, 20, 27, 31, 34], which is an im-
port risk factor for motor and cognitive development.
Microcephaly may be due to viral effects on neuronal forma-
tion during embryogenesis, but can also take place as a part of
fetal brain disruption sequence (FBDS) [20, 30, 31, 34, 35]
even in the late stages of the third trimester wherein fetal brain
tissue destruction occurs secondary to different forms of vas-
cular injury with interruption of blood supply to the central
nervous system [29, 35]. FBDS is described as a rare cause of
extreme microcephaly with normal brain growth throughout
the first 18 weeks of gestation. Brain destruction and volume
loss leads to diminished intracranial pressure with fetal skull
collapse and consequent overlapping sutures, scalp rugae with
normal hair patterning, redundant and folded skin, andmarked
neurological impairment [10, 27, 30, 31, 35] (Fig. 2).

Del Campo et al. [30] describe skull collapse with normal
hair patterning in most microcephalic CZS children evaluated
in their study (fetus usually later than 16 weeks). It is interesting
to notice that hair scalp patterns depend on underlying brain
growth from 10 to 16 gestational weeks. They also observed
some severe microcephalic cases with abnormal hair patterns,
suggesting that the onset of events leading to these dysmorphic
features took place prior to 16 gestational weeks and has been
described elsewhere as a possible consequence of interrupted
neurogenesis with severe brain injury [1].

Although some authors did not observe changes in umbil-
ical and cerebral blood flow (even in the most severe cases) [7,
12, 20], Doppler flow studies can be used in the evaluation of
these major arterial branches [7, 13], even when possible
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FBDS is suspected. Besides, the findings of normal umbilical
and uterine artery Doppler ultrasounds suggest that fetal
growth restriction is related to fetal infection [20].

Microcephaly is a nonspecific finding and the differential
diagnosis includes a wide range of other conditions such as the

classic TORCH infections, human immunodeficiency and
chikungunya viruses, teratogens (such as radiation, antiepilep-
tic drugs, alcohol, cocaine, antiepileptic drugs, lead, or mer-
cury intoxication), maternal malnutrition, and genetic disor-
ders [20, 25, 27, 31, 36]. In addition, althoughmicrocephaly is

Fig. 1 Prenatal a–c ultrasonography and d–f magnetic resonance in
confirmed fetal Zika virus infections. a, b, e Simplified gyral pattern
with agyria and pachygyria (solid arrow). a, b Subcortical calcifications
(white asterisk). dMicrocephaly with prominent occiput (black star) and
hypoplastic corpus callosum (black arrow). e Thickened fornices (black

thin arrows). b, e, fVentriculomegaly with f occipital horns dilated out of
proportion to the e frontal horns due to parieto-occipital gray and white
matter loss (white star), and c intraventricular septation adjacent the atri-
um (open arrowhead). c Enlarged extra-axial subarachnoid space (open
arrow)

Fig. 2 Postnatal computed
tomography (CT) with
multiplanar reformations with a–c
3D reconstructions of an infant
with congenital Zika infection. a–
d Cranial vault partial collapse
with overlapped sutures (arrows),
prominent occiput (arrowhead),
and scalp rugae (asterisk)

Childs Nerv Syst



considered the most common reported sign of CZS, ZIKV-
positive newborns with normal head size but severe brain
development disruption and brain tissue destruction have been
described [1, 13, 17]. Those less common presentations were
usually also associated with brain stem calcification and
marked hydrocephalus [13, 17].

Cortical development abnormalities and defective neuronal
migration

Cortical development abnormalities (CDA) are believed to be
related to the death of cortical progenitor cells caused by the
virus [25], being best evaluated by MR imaging. CDA asso-
ciated with CSZ findings are usually asymmetrical and in-
clude more frequently irregular areas of sulci and/or gyri,
and focal cortical malformation, agyria, and polymicrogyria
or pachygyria [7, 13, 20, 26, 28, 29] (Fig. 3). Most infected
neonates presented shallow sulci and wide interhemispheric
and Sylvian fissures as well as anomalous myelination [13,
28]. Simplified gyral pattern refers to few gyri and shallow
sulci, being related to abnormal neuronal and glial prolifera-
tion, with deficits in cell production and/or white matter de-
velopment. Polymicrogyria and pachygyria are predominantly

found in the frontal lobes, while a simplified gyral pattern is
more found in the parieto-occipital lobes, or diffusely [25, 28].
Pachygyria happens early in pregnancy, between the 12th and
16th gestational weeks [25], and is related to abnormal neuro-
nal migration [25, 28]. Herein, areas of flat, broad, and thick-
ened gyri are observed [25]. Abnormalities in cortical migra-
tion and heterotopias [1, 17, 38], cerebellar cortical dysplasia
[17], and meningeal glioneuronal heterotopia [17, 38] were
also reported.

Interruption in late stages of neuronal migration and corti-
cal organization can lead to polymicrogyria originating only
after the 20th gestational week [37]. Due to the presence of
numerous microgyri and microsulci, the cortex is thickened,
and the cortical and subcortical surface junctions are irregular
[23, 25, 39].

Parenchymal calcifications

Fetal or newborn brain calcification detection is a strong hall-
mark of congenital infection (Fig. 4), which is usually the first
diagnostic hypothesis when identified. CT remains the best
imaging method for its identification and delineation as it
appears as a hyperdense focus [25]. Brain calcification can

Fig. 3 a, c Prenatal magnetic
resonance and postnatal b
computed tomography (CT) and
dMRof congenital Zika infection
cases. a, c Microcephaly and re-
duced brain volume, craniofacial
disproportion with decreased ver-
tical size of the skull, and promi-
nent occipital bone (thick arrow).
a Enlarged torcula filled with
heterogeneous material probably
related to thrombus presence
(white asterisk). a, c Hypoplastic
corpus callosum (thin arrow) and
c brain stem (gray long arrow). b,
d Shallow sulci and Sylvian fis-
sure with hypodeveloped opercu-
la and insular cortex (solid ar-
rowhead). b, d Cortico-
subcortical hypointensity with
thickened blurred borders (curved
arrow). d Ventriculomegaly with
dilated occipital horns (black as-
terisk) and intraventricular
septations (black arrowhead). b
Brain calcifications as hyperdense
foci on CT scan (black star)
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also be depicted postnatally by transfontanellar ultrasonogra-
phy (US) as hyperechoic foci [20, 24, 25].

Oliveira-Szjenfeld et al. considered brain calcifications as
an inclusion criterion for the presumed ZIKV infection and
served as well to rule out microcephaly due to causes other
than infection such as other congenital syndromes or unrec-
ognized prematurity [13]. Calcifications in CZS infection
could affect cortical regions, gray-white matter junction, basal
ganglia and/or thalamus, brain stem, cerebellum, or
periventricular regions [4, 13, 20, 26, 30]. When present,
periventricular calcifications were related to areas of severe
parenchymal thinning [13, 20]. In some cases, a layered cal-
cification appearance was seen with cortical, gray, and white
matter [13].

A candelabra-like pattern of basal ganglia calcification was
described by Schaub et al. in two cases of an US follow-up
study of ZIKV-infected fetuses, suggesting lenticulostriate
vasculopathy. This pattern is nonspecific and can also be ob-
served in congenital cytomegalovirus infection [20].

In another study, postnatal CT scans detected intracranial
calcifications preferentially in the cerebral hemispheres, main-
ly involving the frontal and parietal lobes. Calcifications were
also detected in the basal ganglia and in the thalamus [25, 29,
40], and less frequently in the brain stem and cerebellum [25].
Calcification’s morphology was varied: punctiform, in band,
coarse, or even isolated calcium spots [25].

The best MR sequences to demonstrate intracranial calcifi-
cations were reported to be the susceptibility magnetic weight-
ed (SWi) and T2* gradient echo sequences, where

calcifications appear as dark hypointense foci. Differential
diagnoses for such signal presentation on those sequences
are iron deposition and hemosiderin/ferritin. Calcifications
may show hyperintense signal on T1-weighted MR images,
with possible differential diagnoses being melanin, methemo-
globin, manganese deposition, or lipid [25].

Intraparenchymal calcifications tend to be more severe in
CZS than in other TORCH infections [13] and frequently are
observed in the gray-white matter junction [7, 13, 40]. On one
hand, cytomegalovirus intracranial calcifications are frequent-
ly periventricular [25, 31], although asymmetric basal ganglia,
cortical, and white matter calcifications may also be observed
[25]. Congenital toxoplasmosis has hydrocephalus and
periventricular, thalamic, basal ganglia, and cortical calcifica-
tions (present in 50–80% of cases) as main changes [25].

Calcifications may represent Bscars^ secondary to brain cell
destruction, with calcium deposition over time [13, 25, 31].

Subependymal cysts

The subependymal area is closely related to the lateral
ventricle boundaries and the germinal matrix, where neu-
ronal precursor cells are initially located. Subependymal
pseudocysts can be observed in this region and are com-
monly depicted before and after birth, mostly carrying a
favorable prognosis. Nevertheless, they can be related to
infectious intrauterine diseases such as that by cytomega-
lovirus and CZS, especially when isolated and in the oc-
cipital localization [23].

Fig. 4 Numerous parenchymal
calcifications (arrowheads) due to
congenital Zika infections on a–c
computed tomography, d gesta-
tional ultrasound, and e T1-
weighted magnetic resonance.
Other findings: ventriculomegaly
(white asterisk), prominent occi-
put (star), scalp rugae (thin ar-
rows), and enlarged extra-axial
subarachnoid spaces (curved
arrow)
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Callosal abnormalities

Another common feature in confirmed or presumed CZS
infection is abnormalities in the corpus callosum [7, 13, 20,
23, 28] (Figs. 1 and 3) which are easily detected on US and
MR imaging. This finding is more difficult to be recog-
nized on CT scans, but should be considered when pro-
nounced colpocephaly without visualization of the body
of the corpus callosum is detected [13]. Melo et al. [7]
suggest that changes in the corpus callosum may be related
to decreased number of neuronal cells and/or the interfer-
ence in the neuronal migration process by the ZIKV itself.
Schaub et al. [20] reported progressive and severe corpus
callosum hypoplasia with normal pericallosal artery in all
Doppler scans obtained in a sequential ultrasound assess-
ment follow-up study, probably due to insufficient devel-
opment of fibers that cross the midline. They observed
normal corpus callosum embryological formation without
vascular compromise.

Ventriculomegaly

Although many cases of CZS are associated with micro-
cephaly, sometimes a normal head circumference is ob-
served during pregnancy or after birth, even when exten-
sive brain compromise is detected. This could be due to
severe ventriculomegaly [4, 7, 13, 17] which masks a small
microcephalic brain [25, 28], presumably related to
obstructed ventricles [10]. As a consequence, isolated fetal
head circumference measurement may not be a good prog-
nosis predictor in congenital ZIKV infection [20].
Ventriculomegaly could range from mild to severe [7–9,
12, 13, 17, 23, 28]. The occipital horns of the lateral ven-
tricles are often dilated out of proportion to the frontal
horns due to parieto-occipital volume loss [13, 25] (Fig.
1). Some infants present with reduced cerebrospinal fluid
(CSF) absorption or obstruction of its pathways leading to
hydrocephalus and usually with severe brain stem calcifi-
cation [13, 25]. Intraventricular septations typically occur
in occipital horns and may also be observed pre- and/or
postnatally [13, 18] (Figs. 1 and 3).

Enlarged extra-axial subarachnoid space

Although these findings can be considered normal varia-
tions, they were reported to be more frequent in CZS,
especially in the most severe cases [20, 28], probably
due to brain atrophy or cortical underdevelopment [13,
23, 28] (Figs. 1 and 4). Prominent extra-axial spaces were
frequently observed despite ventriculomegaly [4, 13, 23,
28, 30].

Infratentorial brain anomalies

Brainstem and cerebellar abnormalities

Posterior fossa changes included brain stem abnormalities
such as thin and atrophic pons (Fig. 3) or a kink at the
pontomedullary junction, thinned spinal cord, enlarged cister-
na magna [7, 13, 20, 23, 28], and hypoplastic cerebellar ver-
mis and/or hemispheres [7, 8, 13, 16, 20, 28, 29].

Melo et al. describe fetal deaths shortly after birth due to
respiratory failure in severely affected infants with slender
brain stem. Indeed, fetal MR imaging may play an important
role on the evaluation of newborn survival based on brain
stem abnormalities [7].

Calcifications and hypoplasia were noticed in the brain
stem, mainly in the pons, and in the cerebellum of infants with
CZS [28], possibly secondary to Wallerian degeneration and/
or development arresting of pontocerebellar connections and
the corticobulbar and corticospinal tracts [25, 38].

Dysmorphic brain stem associated with aqueduct stenosis
is a more severe manifestation of infection and can lead to
secondary supratentorial hydrocephaly [4, 13, 17].

Spinal cord and congenital contractures

Multiple congenital joint contractures (arthrogryposis) can be
even detected with US during pregnancy [7, 13, 26, 31]. The
early development of arthrogryposis can be a consequence of
degeneration of motor neurons of long descending tracts (in-
cluding corticospinal tracts) in the brain stem and spinal cord
[12, 17, 41], interfering with neuromuscular signaling and
leading to reduced fetal movements or akinesia [8, 25, 31,
41] and fixed postures and deformities [25, 31] (Fig. 5).

Spine MRI of patients with ZIKV infection and
arthrogryposis shows apparent thinning of the spinal cord and
specifically reduced ventral roots of the medullary cone [25].

Aragão et al. observed that most babies with CZS presented
some degree of spinal cord thickness reduction. This reduction
was predominant in the thoracic segment in cases without
arthrogryposis and compromised the whole spinal cord in
cases of arthrogryposis [25, 42].

It is important to note that congenital arthrogryposis has
also been associated with other intrauterine infections such
as rubella, varicella, and Coxsackie B [31].

Ocular findings

Although posterior segment compromise (retina and optic
nerve) is the most prevalent in ZIKV infection [25, 26, 33,
42], asymmetrical microphthalmia [1, 17, 31], cataracts, her-
niation of the orbital fat into the cranial vault [13, 17, 18, 43],
glaucoma [1], intraocular calcifications, iris coloboma [25, 26,
33], and lens subluxation were also described [25, 33].
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The main risk factors associated with ocular findings are
the gestational trimester when the infection occurred and the
severity of microcephaly at birth. Babies exposed to ZIKV in
the first trimester of pregnancy or those born with severe mi-
crocephaly have a greater chance of ocular abnormalities at
birth [25, 33, 43].

Conclusions

Zika was declared an international public health emergency
concern by the World Health Organization (WHO) in 2016
[28, 44], as it became the first new major infectious disease
linked to human birth defects discovered in more than half a
century [34]. In most cases, maternal ZIKV infection is often
mild or not detected. Nevertheless, exposure to ZIKV during
pregnancy can lead to devastating effects on the developing
fetus [25]. Although most CZS infections may be related to
severe fetal central nervous system compromise, pregnancies
are considered low risk where a high prevalence of vaginal
(78%) and term (91%) deliveries are reported [26].

Ultrasonography (gestational or transfontanellar) must be
the first imaging method in the evaluation of CZS.
Nevertheless, the fontanelles are usually small or even closed
at birth due to microcephaly, which can hinder examination
[20, 26, 30, 31]. Although more expensive than US, and de-
spite the use of ionizing radiation, CT is a faster imaging
technique, with high sensibility to detect calcifications and
capable to check other CNS malformations. Fetal and/or post-
natal MR and CT are complementary tools to gestational, fe-
tal, and neonatal US findings [7, 23]. CT is widely available
and less expensive than MR. On the other hand, MR radiation
free is the best choice for detailed evaluation of CNS

components (brain and spinal cord), also allowing clear dem-
onstration of brain calcifications [25]. However, it is a time-
consuming examination that usually requires sedation.
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